(Side note: Sometimes I refer to the exponent as the one giving the marching orders similar to a military commander. It tells the base number how many times it must multiply itself by itself. For those students who still seem to be in a math fog and are in danger of making the grave error of multiplying the base number by the exponent, have them write down the base number as many times as the exponent says, and insert the multiplication sign (×) between the numbers. Since this is pretty straight forward, it usually works!)
Notice our sequence starts with 31 which means 3 used one time; so, this equals three; 32 means 3 × 3 = 9, 33 = 3 × 3 × 3 = 27, and so forth. As we move down the column, notice the base number of 3 remains constant, but the exponent increases by one. Therefore, we are multiplying the base number of three by three one additional time.
Now let's reverse this pattern and move up the column. How do we get from 243 to 81? That's right! We divide by three because division is the inverse operation (the opposite) of multiplication. How do we get from 243 to 81? That's right! We divide by three because division is the inverse operation (the opposite) of multiplication. Notice as we divide each time, the exponent by the base number of 3 is reduced by one. Let's continue to divide by three as we move up the column. 27÷ 3 = 9; 9 ÷ 3 = 3. Now we are at 31 = 3 which means we must divide 3 by 3 which gives us the quotient of 1. Notice, to fit our pattern, the 3 in the left hand column would have to be 30; so, 30 must equal one!
This works for any number you wish to put in the left hand column. Try substituting the base number of three with two. Work your way up the sequence dividing by two each time. You will discover that two divided by two equals one (20 = 1). Therefore, we can conclude that any natural number with an exponent of 0 is equal to one. (Zero is not included; it's another mystery to solve.)
What happens if we continue to divide up the column past 30 ? (Refer back to the sequence on the left hand side.) Based on the pattern, the exponent of zero will be one less than 0 which gives us the base number of 3 with a negative exponent of one or 3-1 . To maintain the pattern on the right hand side, we must divide 1 by 3 which looks like what you see on the left. Continuing up the column and keeping with our pattern, 3 must now have a negative exponent of 2 or 3-2 and we must divide 1/3 by 3 which looks like what is written on the left.
Each time, the exponent by the base number of 3 is reduced by one. Let's continue to divide by three as we move up the column. 27÷ 3 = 9; 9 ÷ 3 = 3. Now we are at 31 = 3 which means we must divide 3 by 3 which gives us the quotient of 1. Notice, to fit our pattern, the 3 in the left hand column would have to be 30; so, 30 must equal one! This works for any number you wish to put in the left hand column. Try substituting the base number of three with two. Work your way up the sequence dividing by two each time. You will discover that two divided by two equals one (20 = 1). Therefore, we can conclude that any natural number with an exponent of 0 is equal to one. (Zero is not included; it's another mystery to solve.)
As a result, the next two numbers in our pattern are..............??
Mystery Solved! Case Closed!
This lesson is available on a video entitled: Why Does "X" to the Power of 0 Equal 1?
----------------------------------------------------------------------------------------
Want simple, visual answers to other difficult math questions? Try this resource entitled Six Challenging Math Questions with Illustrated Answers. Many of the answers feature a supplementary video for a more detailed explanation.
This lesson is available on a video entitled: Why Does "X" to the Power of 0 Equal 1?
----------------------------------------------------------------------------------------
$4.25 |
Want simple, visual answers to other difficult math questions? Try this resource entitled Six Challenging Math Questions with Illustrated Answers. Many of the answers feature a supplementary video for a more detailed explanation.
1 comment:
nice
Post a Comment