menu   Home Answers Math Games Free Resources Contact Me  

A-MAY-Zing Word Crossword Puzzles

I love the beautiful month of May. Here in Kansas, the fresh cold winds are gone, as are the rains of early spring. May is known as the month of transition, the emerald birthstone, and holidays like Mother's Day, and Memorial Day. It is also recognized as Military Appreciation Month. Some other dates that hold significance are May 1st and May 5th.

May 1st is May Day, and marks the return of spring by the blossoming branches of the forsythia, or lilacs or daffodils popping their heads out of the ground, or the weather turning warmer. May 5th is Cinco de Mayo (The Fifth of May). This day celebrates the victory of the Mexican army over the French army at The Battle of Puebla in 1862. Did you know that no U.S. president has ever died in the month of May? In every other month of the year, at least one U.S. president has died.

Have you heard about these fun dates in May?
  • May 1: School Principals’ Day
  • May 2: World Tuna Day
  • May 8: No Socks Day
  • May 14 (second Wednesday in May): Root Canal Appreciation Day
  • May 14: Dance Like a Chicken Day
  • May 28: Slugs Return from Capistrano Day
$2.85
As I thought about May, I discovered that many words started with the word "MAY." In fact, after much research,  I found 20 different words. Using those words, I created two May-themed crossword puzzles, appropriate for grades 7-10. One crossword puzzle includes a word bank which makes it easier to solve while the more challenging one does not.  Even though the same vocabulary is used for each crossword, each grid is laid out differently; so, you have two distinct puzzles. I've also included the answer keys for both puzzles.

Here are some ideas on how you might use these puzzles.
  1. Try giving the students the crossword with NO word bank to see how much they know.
  2. Use the crossword with the word bank as a review of May and its traditions.
  3. Use either crossword to work in pairs to complete the puzzle. Solving a crossword puzzle together is a great way to connect.
  4. Copy it and make it available for those students who finish their work early.
Above all, just have fun!

Playing Math Games with older students

I currently teach remedial math students on the college level. These are the students who fail to pass the math placement test to enroll in College Algebra - that dreaded class that everyone must pass to graduate. The math curriculum at our community college starts with Basic Math, moves to Fractions, Decimals and Percents, and then to Basic Algebra Concepts. Most of my students are intelligent and want to learn, but they are deeply afraid of math. I refer to them as mathphobics.

We all have this type of student in our classrooms, whether it is middle school, high school, or college. When working with this type of student, it is important to bear in mind how all students learn. I always refer back to the Conceptual Development Model which states that a student must first learn at the concrete stage (use manipulatives) prior to moving to the pictorial stage, and in advance of the abstract level (the book). This means that lessons must include the use of different manipulatives. I use games a great deal because it is an easy way to introduce and use manipulatives without making the student feel like “a little kid.” I can also control the level of mathematical difficulty by varying the rules; thus, customizing the game to meet the instructional objectives my students are learning. However, as with any classroom activity, teachers should monitor and assess the effectiveness of the games.

When using games, other issues to think about are:

1) Excessive competition. The game is to be enjoyable, not a “fight to the death”.

2) Mastery of the mathematical concepts necessary for successful play. Mastery should be at an above average level unless teacher assistance is readily available when needed. A game should not be played if a concept has just been introduced.

3) Difficulty of the rules. If necessary, the rules should be modified or altered in order that the students will do well.

4) Physical requirements (students with special needs). These should be taken into account so that every player has an opportunity to win.

In addition to strengthening content knowledge, math games encourage students to develop such skills as staying on task, cooperating with others, and organization. Games also allow students to review mathematical concepts without the risk of being called “stupid”. Furthermore, students benefit from observing others solve and explain math problems using different strategies.

Games can also….
  1. Pique student interest and participation in math practice and review.
  2. Provide immediate feedback for the teacher. (i.e. Who is still having difficulty with a concept? Who needs verbal assurance? Why is a student continually getting the wrong answer?)
  3. Encourage and engage even the most reluctant student.
  4. Enhance opportunities to respond correctly.
  5. Reinforce or support a positive attitude or viewpoint of mathematics.
  6. Let students test new problem solving strategies without the fear of failing.
  7. Stimulate logical reasoning.
  8. Require critical thinking skills.
  9. Allow the student to use trial and error strategies.
Mathematical games give the learner numerous opportunities to reinforce current knowledge and to try out strategies or techniques without the worry of getting the “wrong” answer. Games provide students of any age with a non-threatening environment for seeing incorrect solutions, not as mistakes, but as steps towards finding the correct mathematical solution.
One math game my students truly enjoy playing is Bug Mania.  It provides motivation for the learner to practice addition, subtraction, and multiplication using positive and negative numbers. The games are simple to individualize since not every pair of students must use the same cubes or have the same objective. Since the goal for each game is determined by the instructor, the time required to play varies. It is always one that my students are anxious to play again and again!

Is FOIL to difficult for your students? Try Using the Box Method.

I tutored a student this summer who was getting ready to take Algebra II. He is a very visual, concrete person that needs many visuals to help him to succeed in math. We worked quite a bit on multiplying two binomials.

There are three different techniques you can use for multiplying polynomials. You can use the FOIL method, Box Method and the distributive property. The best part about it is that they are all the same, and if done correctly, will render the same answer!

Because most math teachers start with FOIL, I started there. The letters FOIL stand for First, Outer, Inner, Last. First means multiply the terms which occur first in each binomial. Then Outer means multiply the outermost terms in the product. Inner is for "inside" so those two terms are multiplied—second term of the first binomial and first term of the second). Last is multiplying the last terms of each binomial. My student could keep FOIL in his head, but couldn't quite remember what the letters represented, let alone which numbers to multiply; so, that method was quickly laid aside. 

I next tried the Box Method. Immediately, it made sense to him, and we were off to the races, so to speak. He continually got the right answer, and his confidence level continued to increase. Here is how the Box Method works.

First, you draw a 2 x 2 box. Second, write the binomials, one along the top of the box, and one binomial down the left hand side of the box. Let's assume the binomials are 2x + 4 and x + 3.

          (2x + 4) (x + 3)

Now multiply the top row by x; that is x times 2x and x times +4., writing the answers in the top row of the box, each in its own square.  After that, multiply  everything in the top row by +3, and write those answers in the second row of the box, each in its own square.

Looking at the box, circle the coefficients that have an x. They are located on the diagonal of the box.
To find the answer, write the term in the first square on the top row, add the terms on the diagonal, and write the number in the last square on the bottom row. Voila! You have your answer!
----------------------------------------------------------------------------

$5.25
Terrible at factoring trinomials (polynomials) in algebra? Then try this method which never fails! It is the one most students understand and grasp. This step-by-step guide teaches how to factor quadratic equations in a straightforward and uncomplicated way. It includes polynomials with common monomial factors, and trinomials with and without 1 as the leading coefficient. Some answers are prime. This simple method does not treat trinomials when a =1 differently since those problems are incorporated with “when a is greater than 1” problems.