menu   Home Answers Math Games Free Resources Contact Me  

Never Too Old to Play a Game - Playing Math Games with older students

I currently teach remedial math students on the college level. These are the students who fail to pass the math placement test to enroll in College Algebra - that dreaded class that everyone must pass to graduate. The math curriculum at our community college starts with Basic Math, moves to Fractions, Decimals and Percents, and then to Basic Algebra Concepts. Most of my students are intelligent and want to learn, but they are deeply afraid of math. I refer to them as mathphobics.

We all have this type of student in our classrooms, whether it is middle school, high school, or college. When working with this type of student, it is important to bear in mind how all students learn. I always refer back to the Conceptual Development Model which states that a student must first learn at the concrete stage (use manipulatives) prior to moving to the pictorial stage, and in advance of the abstract level (the book). This means that lessons must include the use of different manipulatives. I use games a great deal because it is an easy way to introduce and use manipulatives without making the student feel like “a little kid.” I can also control the level of mathematical difficulty by varying the rules; thus, customizing the game to meet the instructional objectives my students are learning. However, as with any classroom activity, teachers should monitor and assess the effectiveness of the games.

When using games, other issues to think about are:

1) Excessive competition. The game is to be enjoyable, not a “fight to the death”.

2) Mastery of the mathematical concepts necessary for successful play. Mastery should be at an above average level unless teacher assistance is readily available when needed. A game should not be played if a concept has just been introduced.

3) Difficulty of the rules. If necessary, the rules should be modified or altered in order that the students will do well.

4) Physical requirements (students with special needs). These should be taken into account so that every player has an opportunity to win.

In addition to strengthening content knowledge, math games encourage students to develop such skills as staying on task, cooperating with others, and organization. Games also allow students to review mathematical concepts without the risk of being called “stupid”. Furthermore, students benefit from observing others solve and explain math problems using different strategies.

Games can also….
  1. Pique student interest and participation in math practice and review.
  2. Provide immediate feedback for the teacher. (i.e. Who is still having difficulty with a concept? Who needs verbal assurance? Why is a student continually getting the wrong answer?)
  3. Encourage and engage even the most reluctant student.
  4. Enhance opportunities to respond correctly.
  5. Reinforce or support a positive attitude or viewpoint of mathematics.
  6. Let students test new problem solving strategies without the fear of failing.
  7. Stimulate logical reasoning.
  8. Require critical thinking skills.
  9. Allow the student to use trial and error strategies.
Mathematical games give the learner numerous opportunities to reinforce current knowledge and to try out strategies or techniques without the worry of getting the “wrong” answer. Games provide students of any age with a non-threatening environment for seeing incorrect solutions, not as mistakes, but as steps towards finding the correct mathematical solution.
One math game my students truly enjoy playing is Bug Mania.  It provides motivation for the learner to practice addition, subtraction, and multiplication using positive and negative numbers. The games are simple to individualize since not every pair of students must use the same cubes or have the same objective. Since the goal for each game is determined by the instructor, the time required to play varies. It is always one that my students are anxious to play again and again!

Is Zero An Even or Odd Number?


Is the number zero even or odd?  This was a question asked on the Forum page of Teachers Pay Teachers by an elementary teacher. She stated that Wikipedia had a long page about the parity of zero and that some of the explanation went a little over her head, but basically the gist was that zero is even because it has the properties of an even number. She further stated that before reading this definition, she probably would have said that zero was neither even nor odd.

Here was my reply. Zero is classified as an even number. An integer n is called *even* if there exists an integer m such that n = 2m,  and *odd* if 2m + 1. From this, it is clear that 0 = (2)(0) is even. The reason for this definition is so that we have the property that every integer is either even or odd.

In a simpler format, an even number is a number that is exactly divisible by 2. That means when you divide by two the remainder is zero. You may want your students to review the multiplication facts for 2 and/or other numbers to look for patterns.

2 x 0 =               3 x 0 =
2 x 1 =               3 x 1 =
2 x 2 =               3 x 2 =
2 x 3 =               3 x 3 =

There is always a pattern of the products. Let the students discover these patterns - Even x Even = Even, Even x Odd = Even and vice versa and Odd x Odd = Odd. Since ALL math is based on patterns, seeing patterns in math helps students to understand and remember. Now ask yourself, "Does zero fit this pattern?"

The students can also divide several numbers by 2 (including 0), allowing them to see a second way to conclude that a number is even. (The remainder of the evens is 0, and the remainder of the odds is 1).  Again, "Does zero fit this pattern?"

To demonstrate odds and evens, I like using my hands and fingers since they are always with me. Let's begin with the number two.  I start by having the students make two fists that touch each other. I then have them put one finger up on one hand and one finger up on the other hand. Then the fingers are to make pairs and touch each other. If there are no fingers left over (without a partner), then the number is even.  (See sequence below.)

Let's try the same procedure using the number three. Again, begin with the two fists. (See sequence below.) Alternating the hands, have the students put up one finger on one hand and one finger up on the other hand; then another finger up on the second hand.  Now have the students make pairs of fingers. Oops!  One of the fingers doesn't have a partner, (one is left over); so, the number three is odd. (I like to say, "Odd man out.")   
So, does this work for zero?  If we start with two fists, and put up no fingers then there are no fingers left over.  The fists are the same, making zero even. (see illustration below)

So the next time you are working on odd and even numbers, make it a "hands-on" activity.