menu   Home Answers Math Games Free Resources Contact Me  

Problem Solving With Number Tiles in Middle School

Math Activities for Grades 5-8
I prefer using hands-on activities when teaching math. One of the most successful items I have used is number tiles. Because number tiles can be moved around without the need to erase or cross out an answer, I have discovered that students are more at ease and more willing to try challenging activities. There is something about not having a permanent answer on the page that allows the student to explore, investigate, problem solve, and yes, even guess.

I have created several number tile booklets, but the one I will feature today is for grades 5-8. It is a booklet that contains 15 different math problem solving activities that range from addition and multiplication, to primes and composites, to exponent problems, to using the divisibility rules. Since the students do not write in the book, the pages can be copied and laminated so that they can be used from year to year. These activities may be placed at a table for math practice or as a center activity. They are also a perfect resource for those students who finish an assignment or test early. Use these activities to reteach a concept to a small group as well as to introduce a new mathematical concept to the whole class.

Free Resource
Students solve the Number Tile Math Activities by arranging ten number tiles, numbered 0-9. Most of the number tile activities require that the students use each tile only once. The number tiles can be made from construction paper, cardboard, or square colored tiles that are purchased.  (How to make the number tiles as well as storage ideas is included in the handout.) Each problem is given on a single page, and each activity varies in difficulty which is suitable for any diverse classroom. Since the students have the freedom to move the tiles around, they are more engaged and more willing to try multiple methods to find the solution. Some of the problems will have just one solution while others have several solutions. These activities are very suitable for the visual and/or kinesthetic learner.

A free version for each of my number tile resources is listed below. Just click on the link to download the freebie.

Glyphs Can Help Students Gather Information, Interpret Data, and Follow Directions


What is a Glyph?
A glyph is a non-standard way of graphing a variety of information to tell a story. It is a flexible data representation tool that uses symbols to represent different data. Glyphs are an innovative instrument that shows several pieces of data at once and necessitates a legend/key to understand the glyph and require problem solving, communication, and data organization.

Remember coloring pages where you had to color in each of the numbers or letters using a key to color certain areas? Or how about coloring books that were filled with color-by-numbers? These color-by-number pages are a type of glyph. Some other activities we can call glyphs would be the paint-by-number kits, the water paints by color coded paint books, and in some cases, even model cars. Some of the model cars had numbers or letters attached to each piece that had to be glued together. These days, this could be considered a type of glyph.

What is the Purpose of a Glyph?


A glyph is a symbol that conveys information nonverbally. Glyphs may be used in many ways to get to know more about students and are extremely useful for students who do not possess the skill to write long, complex explanations. Reading a glyph and interpreting the information represented is a skill that requires deeper thinking. Students must be able to analyze the information presented in visual form. In other words, a glyph is a way to collect, display and analyze data. They are very appropriate to use in the CCSS data management strand (see standards below) of math.  Glyphs actually a type of graph as well as a getting-to- know-you type of activity.

CCSS.Math.Content.1.MD.C.4  Organize, represent, and interpret data with up to three categories;
ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. 

CCSS.Math.Content.2.MD.D.10  Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. 

For example, if the number of buttons on a gingerbread man tells how many people are in a family, the student might be asked to “Count how many people are in your family. Draw that many buttons on the gingerbread man." Since each child is different, the glyphs won't all look the same which causes the students to really look at the data contained in them and decide what the glyphs are showing.

$3.00
Holiday glyphs can be a fun way to gather information about your students. You can find several in my Teachers Pay Teachers store.  My newest one is for Thanksgiving and involves reading and following directions while at the same time requiring problem solving, communication and data organization. The students color or put different items on a turkey based on information about themselves. Students finish the turkey glyph using the seven categories listed below. 

1) Draw a hat on the turkey (girl or a boy?)
2) Creating a color pattern for pets or no pets.
3) Coloring the wings based on whether or not they wear glasses.
4) Writing a Thanksgiving greeting based on how many live in their house.
5) Do you like reading or watching TV the best?
6) How do they get to school. (ride or walk?)
7) Pumpkins (number of letters in first name)

You are invited to the Inlinkz link party!

Click here to enter

Are Calculators a Math Tool or a Hindrance to Learning?

Once upon a time, two mathematicians, Cal Q. Late and Tommy Go Figure, were having a discussion...an argument, really.

"Calculators are terrific math tools," said one of the mathematicians.

"I agree, but they shouldn't be used in the classroom" said the other.

"But?" asked Tommy Go Figure, and this is when the argument started. "That is just crazy!  I agree that having a calculator to use is a convenience, but it does not replace knowing how to do something on your own with your own brain."

"Why should kids have to learn how to do something that they don't have to do, something that a calculator can always be used for?" Cal Q. Late argued.

Tommy retorted,  "Why should kids not have the advantage of knowing how to do math?  To me, a calculator is like having to carry an extra brain around in their pockets.  What if they had to do some figuring and did not have their calculators with them?  Or what if the batteries were dead? (Here's a good reason for solar calculators.) What about that?"

Cal reminded Tommy, "No one is ever in that much of a rush. Doing math computation is rarely an emergency situation. Having to wait to get a new battery would seem to take less time than all the time it would take to learn and practice how to do math. That takes years to do, years that kids could spend doing much more interesting things in math."

"Look," Tommy went on, exasperated, "kids need to depend on themselves to do jobs. Using a calculator is not bad, but it should not be the only way kids can do computation. It just doesn't make sense."

Cal would not budge in the argument. "The calculator is an important math tool. When you do a job, it makes sense to use the best tool there is to to that job. If you have a pencil sharpener, you don't use a knife to sharpen a pencil. If you are in a hurry, you don't walk; you go by car. You don't walk just because it is the way people used to travel long ago."

"Aha!" answered Tommy. "Walking is still useful. Just because we have cars, we don't discourage kids from learning how to walk. That is a ridiculous argument."

This argument went on and one and on...and to this day, it has not been resolved. So kids are still learning how to compute and do math with their brains, while some are also learning how to use calculators.  What about you?  Which mathematician, Cal Q. Late or Tommy Go Figure, do you agree with?

------------------------------------------------------

Of course, this argument was made up, but it is very much like the argument schools and teachers are having about what to do with kids and calculators. What do you think?  Leave your comment for others to read.

My Students Are Having Difficulty Memorizing Those Dreaded Math Facts!

Many of my college students come to me without knowing their math facts. Some do, but most do not. Since we use calculators in the class, it really isn't an issue.  It just takes those students longer to do a test or their homework. One day, the students in my Basic Algebra Concepts class (a remedial math class) were playing a math game to practice adding and subtracting positive and negative numbers. We were using double die (see picture) where a small dice is located inside a larger dice. (I have to keep an eye on these because they tend to "disappear." The students love them!)  I noticed one of my students continually counting the dots on the die. He was unable to see the group of dots and know how many were in the set.  It was then that I realized he could not subitize sets. (to perceive at a glance the number of items presented)

Subitizing sets means that a person can look at a grouping or a set and identify how many there are without individually counting them.  (i.e. three fingers that are held up)  When a child is unable to do this, they cannot memorize math facts since memorizing is associating an abstract number with a concrete set.  Many teachers as well as parents fail to recognize the root cause of this memorization problem.  AND no amount of practicing, bribing, yelling, or pulling out your hair will change the situation.  So what can you do?

First of all, the problem must be identified.  Use a dice and see if the child must count each dot on each face. Try holding up fingers or laying out sets of candy (M&M's - yummy!) or using dominoes. Put five beans in a container, and ask the child how many are in the box. (They may count them the first few times.)  Take them out, and put them back in.  Ask the child again how many there are.  If, after several times, s/he is unable to recognize the set as a whole, then s/he cannot subitize sets.

How do you help such a child?  If you have small children at home, begin subitizing sets by holding up various combinations of fingers.  My youngest grandson just turned four; so, we worked on holding up two fingers on one hand and two fingers on the other; then one and three fingers, and of course, four fingers. I also like to use dominoes. They already have set groupings which can be identified, added, subtracted, and even multiplied. A dice is great because the child thinks you are playing a game, not doing math.  Roll one dice, and ask the child to identify the set of dots. Try the bean idea, but continue to change the number of beans in the box.  My grandchildren love the candy idea because they are allowed to eat them when we are done.  (All children need a little sugar now and then even though their parents try to control the intake.  I love being a Grandma!)

Gregory Tang has written two wonderful books for older children, The Grapes of Math and Math for All Seasons, which emphasize subitizing sets. At times, I even use them in my college classes!  I was fortunate to attend two of his workshops presented by Creative Mathematics. He not only has a sense of humor, but his books can be read again and again without a child becoming bored. Check them out!